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VORTEX MOTIONS OF SOLID MEDIA IN DYNAMIC
PROBLEMS OF THE ELASTICITY THEORY

V. A. Andrushchenko, V. A. Goloveshkin, and UDC 539.3/532.527
N. N. Kholin

Within the framework of a problem of constructing a mathematical theory for vortex motions of solid media,
we investigated a number of problems of the dynamic elasticity theory with application of numerical and
analytical approaches. The solution for a self-similar problem in the finite form is presented, which we were
able to divide uniquely into potential and vortex components.

In the present work an attempt is made to analytically describe vortex structures that appear in dynamic
problems of the mechanics on deformable solids. The initial stage of this attempt is of an illustrative nature, i.e.,
on an example of a numerical solution of comparatively simple problems the presence of vortex structures is shown
(see [1-3]. Then the specific problem is considered, a feature of which is the fact that naturally it is possible in
this problem to uniquely analytically separate a motion into a vortex motion, namely, solenoidal, and potential. A
separation method implies that the solution is obtained by expansion of a general solution into a series of certain
functions, and here one part of the terms in the series corresponds to a potential component of the solution, while
another part, to a vortex component. It is possible to sum the series and to present the vortex and potential
components of the general solution in finite form.

1. Problems of Collision. We consider boundary-value axisymmetric problems as a normal collision of a
cylinder of radius r; and height A" with an absolutely stiff plane (problem 1) and as a coaxial collision, with a round
plate of radius Ré) and thickness H (problem 2) in an elastic arrangement. Assuming a smallness of the rate of
collision V;) (and of deformations and stresses, respectively), the equations of motion in cylindrical coordinates (r,
¢, z) can be written in the form of

a,ﬂ,.,. + 0,0 (arr - a<p¢)/r = P,' a;ur ’ azo'zz + at‘arz + 2arz/r = pi atztuz M (1)

z°rz

We use the traditional notation: 4, and u, are the radial and axial motions; o,,, 0, 0, and o, are the components

of the stress tensor; p; is the density of the material (=1 for the cylinder, i =2 for the plate). The relation between
the stresses and motions is taken in the following form:

O = A; QI I+ 2; ,u,, Oy, = A, divE + 2u;u,/r,
O =M div+ 2u;0,u,, 0, =u; (3,4, + duy), 2
dive = B, + Ou, + 1,/ r.
The boundary conditions on the contact surface (z=0, r < ro) for problem 1 [1, 31 look like
()1 = (0, =0, ©)

and for problem 2 [2], like

Institute for Design Automation of the Russian Academy of Sciences, Moscow, Russia. Translated from
Inzhenerno-Fizicheskii Zhurnal, Vol. 72, No. 4, pp. 802-809, July-August, 1999, Original article submitted October
6, 1998.

776 1062-0125/99/7204-0776$22.00 ©1999 Kluwer Academic/Plenum Publishers



—
o
o

F S S
e Y o
SR SR

L
i

/
B

e A
RN VY R
IR r Y

o~ N

ey

» ’I’C/’—_“-—-—-—-.‘

o N
e N A

L e

Ll
" S

. - -

PR S S i
. S e L
o S

- e,

¢’

0 0 r 0 r
Fig. 1. Patterns of rearrangement of vertical velocity field at collision of an
elastic cylinder against a stiff plane (the radius of the cylinder is r, =
5-107% m; the height is 2’ = 107! m).

(ur)l = (ur)Z ’ (uz)l = (uz)Z ’ (Gzz)l = (022)2 ’ (arz)l = (Urz)Z . (4)

The remaining outer surface is considered to be free of stresses.
The initial conditions (when ¢ = 0) are as follows:

) =0, B;u), =0, (1), =0, (3,u); =— Vy; (3)

(“r)Z =0, (61 ur)Z =0 ’ (uz)Z =0, (at uZ)Z =0. (6)

In passing to dimensionless variables, initial equations (1)-(2) and boundary (3) and initial (5) conditions
for problem 1 contain the following determining parameters:

1/2 ' 1/2 :
cop = [y /Gy +2u)] 7, Vo=Volpy /Gy +2u)1 7 h=h/ry. M
In problem 2 to these parameters we add the following ones:
1/2 ‘ ’
Cop = lp/Ga+ 2u)1 7, E=py/py, H=H/ry, Ry=Rp/rg. ®

The above-formulated boundary-value problems are solved numerically by a straight-throngh method with
the help of an explicit finite-difference "leap-frog”-type circuit (by Lax—Vendroff) using a consistent procedure of
smoothing, which introduces into the circuit the majorant properties, being not included in it initially.

Dynamic probiem 1 for an aluminum cylinder is solved at the following values of the determining
paramcters (7): ¢y = 0.53; Vo = 10_2; h =2 for the time interval ¢ < ¢,, where ¢, is the recoil time at which all the
points of the contact boundary of a striker are separated from a barrier; this is the instant at which the conditions
[4 ] arc satisfied:

]
Fy=2t[o0,(r,0,f)rdr=0,
° ©

'

K 7o n o
Vi = 2 [ fpy vrdrdz /an fpyrdrdz| > 0.
c 0 0 0

Calculations, carried out in the elastic approximation, show that the recoil time in this case is approximately
equal to the time of arrival of a wave reflected from a free cylinder end, propagating at the plug velocity, ¢, =
2h’/c1 (thus, for the aluminum striker: ¢; = 5.5-10° m/sec, A’ = 107! m, ¢ = 36 usec). For this time of double
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Fig. 2. Change in forces F of interaction on a contact surface in an elastic
cylinder-stiff plane system with time ¢ for variants 1 and 2 (lines 1 and 2,
respectively). F, N; ¢ usec.
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Fig. 3. Patterns of the vector velocity field at collision of elastic cylinder and
plate for two time instants 7 = 5.5 and 11 usec (a and b, respectively: the
radius of the cylinder is ry = 1072 m and that of the plate is Ry = 5~ 1072 m;
the height of the cylinder is ' = 3-10! m; of the plate itis #' = 5-1072 m).

passage of the wave over the cylinder length a velocity field rearranges from vertical directed downward to the
barrier, to virtually completely vertical directed upward. The process of rearrangement, observed over the vector
velocity field, occurs in the following manner. At the initial stage of interaction with the stiff plane the velocity
vectors in the lower half of the cylinder, adjacent to the barrier, move apart as a fan from the symmetry axis to
the lateral surface (see Fig. 1a). Then a gradual change begins in the flow: near the contact end it acquires the
closed toroidal vortex type with a twist directed to the symmetry axis, while in the upper part the flow remains still
nearly vertical directed downward (see Fig. 1b). Further the volumetric vortex structure rises up to the free end,
and the vector field by the instant of recoil is completely rearranged (see Fig. 1¢).

Dynamic problem 2 for aluminum cylinders (strikers) and a round plate (a target) is solved at the following
values of determining parameters (7) and ): ¢g; = ¢y, =0.53; Vo =17- 10_3; h=03; H=1; Ry =5 (variant 1),
and 2 = 0.6; H = 2; Rg = 10 (variant 2) for the time interval { < t;, where 1, is the recoil time determined from
criterion (9).

From the approximate theory constructed in [2] it follows that for time instants close to the initial
t < h/c, (c, is the plug velocity in the plate), a force on the contact surface must be constant and determined by
the relation

Vv
F=p—22—0nr3. (10)

Actually, as the calculations show, when ¢ < 2 usec (h/c,=1.8 usec) the obtained forces F(#) on the contact remain
constant (see curves 1 and 2 in Fig. 2), and here the greater the difference in the radii of the striker and plate
(rg=10"2m, Ry=5-10"%m, i.e., Ry= 5 (variant 1) and ry = 5-107% m, Ry = 5-1072 m, i.e., Ry = 10 (variant
2)), the better the coincidence of the calculated force F(#) with the value given by formula (10) (compare curves 1
and 2 with lines 3 and 4 in Fig. 2, respectively). Moreover, for variant 2 the force on the contact remains close to
the theoretical value almost to the recoil instant.

778



In Fig. 3 for two time instants ¢ = 5.5 and 11 usec we present instantaneous patterns of the velocity fields
in the right half of the cross section plane (r 0 z) for variant 1. Intense toroidal vortex structures, originated near
the angular points over the perimeter of the circular contact region in both the cylinder and the plate, further
propagate upward, i.e., to the free cylinder end and laterally, namely, to the lateral surface of the round plate,
with rotation directions in them being opposite (see Fig. 3a). In the course of subsequent evolution of the process,
i.e., of complex wave and vortex interactions inside of the objects and on boundaries, secondary vortex structures
originate and gradually the velocity field in the striker and in the part of the plate focated directly under the striker
rearranges vertically and directed upward (see Fig. 3b). By the time instant ¢ = 13 usec the flow parameters take
the values that satisfy criterion (9), and a recoil occurs.

Completing the first section it should be noted that, on the one hand, vortex motions of solid media (as
our computational experiments showed [3]) generate under similar actions not only in elastic objects but also in
elasticoplastic and viscoelastic ones; on the other hand, the vortex motions take place also in numerous other
dynamic processes in the mechanics of deformable solids, and (as the authors informed us kindly) they were
observed at collision of different cylindrical objects [5, 6], on breaking through barriers [7], under the action of
a die on a layer [8], etc.

2. Problem of Motion of a Wedge in an Elastic Plane. As an example of the problem in which it is possible
in a natural manner to uniquely divide a motion into vortex and potential ones, we consider the deformation of an
elastic plane at the prescribed initial velocity in the wedge-shaped region. At the initial time instant ¢ = 0, in the
infinite wedge-shaped region with an arbitrary aperture angle (a, — a,) between faces-sides (a, is the angle
between the first _§1de and the abscissa axis x, while a,, between the second side and the abscissa axis x) the
constant velocity Vo (Vx V) is prescribed. Assuming a smallness of the velocity Vo , the equations of motion
in a polar coordinate system (r o) have the form

2
9,0,, + 6¢ar¢/r + (o,, — a¢¢)/r = poyl,,

(11)
2
0,0,,/ 7 + 0,0, + 20np/r = pou,

where connections between the stresses and motions are determined by the relations

o,, = A div 7+ 2ud,u, , Tpp = Adiv i+ 2uu,/r, (12)

Opp = Y (Opltp/ T + Opu, — u, /1), div u= Opty + O U,/ T + U,/ 1
Initial conditions (at 1 = 0) are as follows

ur=u¢=0, a,urza,uq,:o when ¢ € 10, a;[U]a,, 271 ; a%)

du, = V;cos<p + V;,simp, O, = V'ycos<p - V;c sinp when ¢ € Ja;, a,l.

Since the dimensional scale of length is absent, from problem statement (11)-(13) we can seek a solution
in the form of

=1 (zp), u,=1(z9), (14)

where z=r/c\t; ¢, = [A + 2w /p ]l/ 2 is the propagation velocity of volumetric compression.

Initial equations (11)-(12) and initial conditions (13) after nondimensionalization contain the following
determining parameters of the problem:

co=w/G+u1"?, Vi=Vi/ey, Vy=V/e, ap, o (15)
and after substitution of Eq. (14) into (11)-(12) and (13), they take the form
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(1~ 2 00 + 3,f/2 = /2" + (co/2)” Opf +

2 2 2,2
+ [(1 = ¢p) /2)0,,8— (A +cy) /2 ]6¢g=0,
2 2 2,2 2 2, .2 (16)
[(1 = c) /z} g, f+ [(1+cp) /2 10,/ + (cg—2) 0y, 8+
+(ce/2) 0,8~ cog/z + (3hy )/ =0
and
lim f(z,¢) = lim g(z,p) =0 when ¢ € 10,21 U Jo,, 27[,
z>00 >0 (17)
lim f(z,p) =V, cosp + Vysing, lim g(z,9) = V,cosp ~ V,sinp
Z—> 00 Z>
when ‘4 (S ]al' 02[ .
Solution of formulated self-similar problem (16)-(17) is sought in the form:
f(z9)=uy () + 2 (up; (D) cOsaup + u,, (2) sinayp),
n=1
(18)

g(z,p)=v(2) + Z (V1 (@ sinap + v, , (z) cos a,p) .

n=1

Using the properties of continuity, boundedness, and periodicity of solution (18), after tedious calculations
(for this reason they are not presented here) we obtain its finite form, consisting of the potential (p) and solenoidal
(s) parts:

f(zp)=F@e)+ e, ezp)=8, (=9 +&(zp). (19)

The potential components of the solution look like:

2
fh@p) = 2 @) GE A,

(20
2
g (2, 9) = (Vycos p = Vysing) I (p, ay, p3) — _Zl @, (i, a) F (T, B)
l=
while the solenoidal (vortex) components, like:
2
[ (z,p) = 2 d (i,a,) F(r,B;) + (V cosp + V, sin p) I (p, ay, ay),
i=1
(209

2
&)= 2 2 6a)G@h).
Here

Bi=¢—a;, B a)=(-1) (Vycosa; + V,sina)/2,
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D, (i, &) = (= 1) (Vsina; + V, cos a)/ 2,
M(p,a;,a;) =1 when ¢ —n € la|, ay,[,
II(p,ay,a3) =0 when ¢ -7 € 10, a,[ U Ja,, 271, (21)

F(,B)=A(@)sing; + B(t,B)cos B; — C (z, B,) sin 28,/2,

G(t,B) = A (x)cos B, — B (z, ) sin B, + C (z, ) sin’ B;,

where 7, A(r), B(t, B), and C(, B) are different with respect to z for the two regions:
when z € J0, ¢l

7 =1In {[Co + (C(Z) - 22)1/2]/2} , C(z,B) = [n/2 + arctan (cos §;/sinh 1) }/cosh 7 ,
B (7, B;) = arctan [sin 28;/(exp 2t + cos 28;)] — B;, A(x) =7 — tanh7; (22)
when z € Jeg, »[
T = arccos (¢y/z) ,
A@ =0, B pf)==n, C(x,p)=0 when ;€ |-n,7-x/2[,
A@)y=0, B(a,p)=0, C(x,B)=n/cost when B,€ ¥ —n/2,n/2 — [, (23)
Ar)=0, B(r,f)=—-=n, C(r,B)=0 when B,€ It/2 -7, x[.

The corresponding values for the solenoidal velocity components (v,)4 and (v, ¢) ¢ take the form:
2
s= D P a) [F@,B)+P(x) 3, F(T, )1+
i=1

+ (Vycosp + Vysinp) Il (p, o, a3) ,
(24)

2
Vp)s= 2 Vs (ha) [G(T, B) + P (1) 9, G (7, B)].
i=1

Here ®4(i, @), F(x, B), and G(z, ) are determined by relations (21)-(23) and by

o, F(1,B8;) = D (r)sinB; + E (z, B)) cos B; — Q (z, ;) sin 2;8/2 ,
(25)

3,G(z,B) = D (z)cos B; — E (z, f;) sin B; + Q (r, ) sin” B; ,

where 7, P(x), D(v), E(t, ), and Q(z, 8 are different with respect to z for the two regions:
when z € 10, ¢ol

T=1In {[co + (c(z) - 22)1/2/2} , P(r) =ctanhrt,
D(@r)=1—=cosh ’7, Q(r,B) = — tanh 1C (7, By »

E (1, B;) = sin 28, {(sinhzr + cc;szﬁi)_l -
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— 4 exp 21 [(exp 2t + cos 2,13[)2 + sin’ Zﬂi]*l}/Z;
when z € lcg, o]
T = arccos (¢y/z), P ()= —ctant, D(r)=E(7,5,) =0,

Q@ pB)=0 when g€ -n,7—n/2[U In/2 — 1, x|,

Q(r,ﬂi)=ntanrcos—lr when B, € r —n/2, /2 —1].

The functions of vortices for the motion u and velocity v have the form
L 2
rotii= > @ (i,e) U B),
i=1

where U(z, B take different values with respect to z for the two regions:
when z € ]0, ¢l

Uz, B)=coshtC(r,B)/cy;
when z € Jeg, |
U@,B;)=0 when B, € |-z, 71 —n/2]U /2 —1,7[;

U(,B)=n/cyg when B, € It —n/2,n/2 —1[;

2
rot ;)z Z (DS (19 al') V(Tv ﬂz) 1
i=1

where V(z, ) take different values with respect to z for the two regions:
when z € 10, col

T=1In {[c0 + (cg — 22)1/2/z} )
V (7, 8;) = — ctanh 7 cos B; [¢q sinh v (sinh2 T + cos” B) ]_l ;

when z € Jeg, !

= arccos (cg/z) ,

Vi, B)=a6B;i~t+a/2y+3 B, +1-n/Qi/cy, i=1,2.

(26)

(27)

(28)

(29)

(30)

€2y

(32)

(33

We note that potential and vortex solutions have a specific feature at the wedge vertex, which is annihilated

on their summation.

Before proceeding to graphical interpretation and subsequent analysis of analytical solution (20)-(32) for
different values of initial conditions (13), we note that in section 1 the vortex motions of the medium are illustrated
by the velocity fields (see Figs. 1 and 3); therefore, first, calculations in [1, 2] were carried out not directly from
Egs. (1)-(2) for motions but by their analogs in velocity variables and, second, for possible comparison of the

resulting vortex-type flows with similar flows in hydrodynamics that can be naturally visualized using computer
graphing by the velocity fields. Further, in direct study of vortex motions in solid media, for illustrations use is
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Fig. 4. Patterns of vector fields of total (a), vortex (b), and rot « (¢) motions
-

with the direction of the initial velocity V over the first quadrant bisectrix

(variant 1) and over the normal to the first quadrant bisectrix (variant 2).

made of fields of motions, since the stressed-deformable state of solid substances is determined either by a current
type of this field or by the entire history of its variation.

We consider solutions of problem (11)-(13) for two sets of determining parameters (2.5): ¢, = 0.55; a, =
0; ay=m/2; V= -1073; Vi= -1073 (variant 1) and Vy= 1073 (variant 2). R

Variant 1 corresponds to the assignment inside of the first quadrant of the velocity, equal to | VI =
vZ-1072 and directed along a proper bisectrix; variant 2, to the assignment of the same velocity in the modulus
directed to the bisectrix over the normal.

Figure 4 presents the vector fields of motions % (a) and of their solenoidal components 175 (b), as well as
the isolines of the vortex functions rot # (c) for variants 1 and 2, respectively, in a square with a center at the
coordinate origin (0, 0) and a side equal to 2.9 in the variables z = r/c,t (Fig. 4 illustrates the axes of coordinates
x and y and the circles of radii z = ¢, and 1; arrows indicate the directions of initial motion). From the fields of
motions « (see Fig. 4a, variants 1 and 2) it is difficult to say anything about the nature of the medium motion apart
from its obvious symmetry with respect to the bisectrix (a, — @,)/2 for variant 1. From the distributions of the
vortex functions rot i (see Fig. 4c, variants 1 and 2) it is possible only to establish that the medium motion in both
cases is vortical, since there are regions where rot « # 0. Patterns of the fields of solenoidal motions are consider-
ably more informative, since with these it is evident that for the first variant the vortex motion is separated into
two vortex flows that are symmetric about the bisectrix (see Fig. 4b, variant 1), while for the second variant, the
vortex motion has a unique twisted closed structure, which rotates in a clockwise direction with a center near the
angular point of the wedge (see Fig. 4b, variant 2).

In conclusion we note that purely from theoretical and methodical viewpoints the problem investigated is
a new section in the dynamics of solid media, since the theory created for vortex flows of solid media is new by
itself as are the investigation methods developed on the basis of analytical and numerical approaches.

The present work was carried out with financial support of the Russian Fund for Basic Research (grant
No. 98-01-00019).

NOTATION

x, y, Cartesian coordinates; r, z, ¢, radial, axial, and azimuth coordinates; ¢, time; u(u,, u,, u (P), motion;

o, , 0., o ,components of the stress tensor; Pi material 'density; V(Vy, vy and V('),

W ), velocity;
viv,, v, ulp , velocity; o, 222 Or Orp

r’
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Vp, initial velocity (with a prime, dimensional; without a prime, dimensionless); 4; and M Lameé parameters; ;s
plug velocity; ¢, = [u/(A + 2/1)]1/2; ry» Ro and hy, Hoy, radii and heights of the objects; Vp, vertical velocity
component of the cylinder mass center; F(#), force on the contact surface of the objects; o, a,, angles between the
wedge sides and abscissa axis; ﬂi = —a, flz, p), gz, p), self-similar solution; £, 8y and f, & potential and
vortex components of the solution, respectively; ®, @, o), ®s(i, ap), Iy, ay, ay), F(, By, G, B), A, B(T,ﬂi),
C@, By, E, ﬂi), Qf(, ,Bi), P, D@, UG, B), V(z, B), auxiliary functions; d, delta-function. Subscripts: m, mass
center; p, potential components; s, vortex components; i = 1, 2.

REFERENCES

1. N. N. Kholin, V. A. Andrushchenko, and O. V. Trajnev, Proc. 1990 Intern. Conf. Eng. Design (ICED), Vol. 2,
Dubrovnik (1990), pp. 914-919.

2. V. A. Andrushchenko, V. A. Goloveshkin, and N. N. Kholin, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5,
81-88 (1990)

3. N. N. Kholin and V.A. Andrushchenko, in: Calculations of Strength, Issue 31 |in Russian ), Moscow (1990),
pp. 208-230.

4. A. 1. Gulidov and V. M. Fomin, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 126-132 (1980).

5. A. 1. Glushko, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 104-112 (1980).

6. A. L. Glushko, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3, 179-183 (1985).

7. N. G. Burago and V. N. Kukudzhanov, Solution of Elasticoplastic Problems by a Method of Finite Elements.

Packet of Applied Programs "ASTRA" {in Russian |, Preprint, No. 326, Institute of Applied Mechanics of the
Academy of Sciences of SSSR, Moscow (1988).
8. A. N. Kovshov, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 47-53 (1996).

784



