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V O R T E X  M O T I O N S  O F  S O L I D  M E D I A  I N  D Y N A M I C  

P R O B L E M S  O F  T H E  E L A S T I C I T Y  T H E O R Y  

V. A. Andrushchenko,  V. A. Goloveshkin, and 
N.  N,  Khol in  

UDC 539.3/532.527 

Within the framework of a problem of constructing a mathematical  theory for vortex mot ions  of  solid media, 

we investigated a number of  problems of the dynamic elasticity theory with application of  numerical and  

analytical approaches. The solution for a self-similar problem in the finite form is presented, which we were 

able to divide uniquely into potential and vortex components. 

In the present  work an attempt is made to analytically descr ibe vortex s tructures  tha t  appear  in dynamic 

problems of the  mechanics on deformable solids. The  initial stage of this attempt is of an illustrative nature,  i.e., 

on an example  of a numerical solution of comparatively simple problems the presence of vor tex structures is shown 

(see [1-3 ]). T h e n  the specific problem is considered, a feature of which is the fact that  na tura l ly  it is possible in 

this problem to uniquely analytically separate a motion into a vortex motion, namely,  solenoidal ,  and potential. A 

separation me thod  implies that the solution is obtained by expansion of a general solution into a series of certain 

functions, and  here  one part of the terms in the series corresponds to a potential component  of the solution, while 

another  part ,  to a vortex component. It is possible to sum the series and to present  the vortex and potential 

components of the general  solution in finite form. 

1. P rob lems  of  Collision. We consider boundary-value axisymmetr ic  problems as a normal collision of a 

cylinder of radius  r 0 and height h' with an absolutely stiff plane (problem 1) and as a coaxial collision, with a round  

plate of radius  R'  0 and  thickness H' (problem 2) in an elastic a r rangement .  Assuming a smallness of the rate of 

collision V o (and of deformations and stresses, respectively), the equat ions of motion in cyl indrical  coordinates (r, 

~0, z) can be wri t ten  in the form of 

2 2 
Orarr + Ozarz (arr -- c r ~ , ) / r  = Pi OttUr , Ozazz + 3rarz + 2 a r z / r  = Pi  OttUz �9 (I) 

We use the t radi t ional  notation: u r and u z are the radial and axial motions;  arr , azz, a~,~,, and arz are  the components 

of the stress tensor;  Pi is the density of the material (i -- 1 for the cyl inder ,  i -- 2 for the plate).  T h e  relation between 

the stresses and  motions is taken in the following form: 

arr = 3t i div ~ +  2/x i OrUr, t7~ o = ~t i div ~ +  2/z i Ur/r , 

Ozz = 2 i div h*+ 2]A i OzUz, Orz -~ /A i (OzU r 4- OrUz) , 

div i f =  OrU r + Ozu z + Ur/r .  

T h e  bounda ry  conditions on the contact surface (z = 0, r < r 0) for problem 1 [ 1, 3 ] look like 

(2) 

(Uz) I = (arz) l = O ,  (3) 

and for problem 2 [2 l, like 
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Fig. I. Pa t te rns  of r ea r rangement  of vertical velocity field at collision of an 

elastic cy l i nde r  aga ins t  a stiff p lane  (the radius  of the c y l i n d e r  is r 0 = 

5- 10 -2  m; the height is h' = 10 -1 m).  

(Ur) 1 = (Ur)2, (Uz)I = (Uz)2, (Crzz) 1 = (O'zz)2, (O'rz) 1 = (tYrz)2. 

The  remaining outer  surface is considered to be free of s tresses.  

The  initial conditions (when t - -  O) are as follows: 

(4) 

(ttr) 1 = 0 ,  (O tttr) 1 = 0 ,  (Uz) 1 = 0 ,  (0, Uz) 1 = - V' O; (S) 

(Ur) 2 = 0 ,  (0 t ttr) 2 = 0 ,  (Uz) 2 = 0 ,  (0 t ttz) 2 = O�9 (6) 

In passing to dimensionless variables,  initial equat ions (1)-(2) and  bounda ry  (3) and  initial (5) condi t ions 

for problem 1 contain the following determining parameters :  

col = [fll/(,~l + 2,Ul)] 1/2 , V 0 = V' 0 [ p l / ( l l  + 2,t/l)] 1/2 , h = h ' / r  0 . (7) 

In problem 2 to these parameters  we add  the following ones: 

c02 = Lu2/(22 + 2/~2)] 1 /2 ,  ~ = p 2 / P l  , H =  H ' / r  O, R 0 = R o / r  O. (8) 

The  above-formula ted  boundary-va lue  problems are  solved numerical ly  by  a s t ra ight - through m e t h o d  with 

the help of an explicit f inite-difference " leap-frog"- type circuit (by L a x - V e n d r o f f )  us ing a consistent p rocedure  of 

smoothing,  which introduces into the circuit the majoran t  properties,  being not inc luded in it initially�9 

Dynamic  problem 1 for  an a luminum cy l inde r  is solved at the fol lowing values of the  d e t e r m i n i n g  

Ixlramcicrs (7): %1 = 0.53; V 0 --- 10-2; h = 2 for the t ime interval t < t I, where  t 1 is the recoil t ime at  which all the 

lx~ints of the contact boundary  of a s tr iker  are separa ted  f rom a barrier;  this is the ins tan t  at which the  condi t ions 

14 ] arc  satisfied: 

rO 
F (t) = 2~ f Crzz (r, O, t) rdr = O, 

o 
(9) 

li ) V m= 2~ f P l  vrdrdz / 2~ f p l r d r d z  > O. 
0 0 0 

Calculations, carried out in the elastic approximat ion ,  show that  the recoil t ime in this case is app rox ima te ly  

equal to the t ime of arrival of a wave reflected from a f ree  cylinder end,  p ropaga t ing  at the plug velocity,  t 1 = 

2h ' / c  1 (thus, for the a luminum striker: c, = 5.5- 103 m / s e c ,  h' = 10 -1 m, t 1 = 36/xsec) .  For this t ime of double  
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Fig. 2. Change in forces F of interaction on a contact  surface in an elastic 

cyl inder-s t i f f  plane sys tem with t ime t for var iants  1 and  2 (lines 1 and  2, 

respect ively) .  F, N; t ~sec.  
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Fig. 3. Pat terns  of the vector  velocity field at collision of elastic cylinder and  

p la te  for  two t ime ins tants  t -- 5.5 and 11 /~sec (a and  b, respectively: the 

r ad ius  of the cyl inder  is r o -- 10 -2  m and that  of the plate  is Ro = 5 .10  - 2  m; 

the  height  of the cyl inder  is h' -- 3 .10  - l  m; of the plate  it is H' = 5 .10  -2  m).  

passage  of the wave over  the cyl inder  length a velocity field r ea r r anges  from vertical directed downward  to the 

barr ier ,  to virtually comple te ly  vertical directed upward.  The  process of rear rangement ,  observed over the vector 

velocity field, occurs in the following manner .  At the initial s tage of interact ion with the stiff plane the velocity 

vectors in the lower ha l f  of the cylinder,  adjacent  to the barrier ,  move apar t  as a fan from the s y m m e t r y  axis to 

the lateral surface (see Fig. la) .  T h e n  a gradual  change begins in the  flow: near  the contact end it acquires the 

closed toroidal vor tex  t ype  with a twist directed to the symmet ry  axis,  while in the upper part  the flow remains  still 

near ly  vertical d i rec ted  downward (see Fig. lb ) .  Fur ther  the volumetr ic  vortex structure rises up to the free end,  

and  the vector field b y  the  instant of recoil is completely rea r ranged  (see Fig. lc).  

Dynamic  p rob l em  2 for a luminum cyl inders  (strikers) and  a round  plate (a target) is solved at the following 

values of de termining  pa ramete r s  (7) and  (8): c01 = %2 = 0.53; Vo -- 7 - 1 0 - 3 ;  h = 0.3; H -- 1; Ro -- 5 (variant 1), 

and  h = 0.6; H -- 2; R 0 -- 10 (variant 2) for the t ime interval t < t 1, where  t I is the recoil t ime de te rmined  from 

criterion (9). 

From the a p p r o x i m a t e  theory  cons t ruc ted  in [2] it follows tha t  for time ins tants  close to the initial 

t < h / c  2 (c 2 is the plug velocity in the plate) ,  a force on the contact  surface  must  be constant  and  de te rmined  by 

the relation 

c2vo 2 (lo) 
F = p T a r o .  

Actually, as the calculat ions show, when  t < 2/~sec (h/c2= 1.8 ~sec) the  obta ined  forces F(t) on the contact remain  

constant  (see curves 1 and  2 in Fig. 2), and  here  the greater  the di f ference in the radii of the str iker and  plate 

(r o -- 10 -2  m, R' o -- 5- 10 - 2  m, i.e., R o -- 5 (variant 1) and r 0 = 5" 10 - 3  m, R' o = 5 .10  -2  m, i.e., R 0- -  10 (variant 

2)) ,  the bet ter  the coincidence of the calculated force F(t) with the value given by formula (10) (compare curves 1 

and  2 with lines 3 a n d  4 in Fig. 2, respect ively) .  Moreover, for var ian t  2 the force on the contact remains  close to 

the theoretical value a lmos t  to the recoil instant.  
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In Fig. 3 for two t ime instants t - 5.5 and 1 1 Hsec we present instantaneous patterns of the velocity fields 

in the right hal f  of the cross section plane (r 0 z) for variant  1. Intense toroidal vortex structures, originated nea r  

the angular  points over the per imeter  of the circular contact region in both the cylinder and the plate, fu r the r  

propagate upward,  i.e., to the free cyl inder  end and laterally,  namely,  to the lateral surface of the round plate,  

with rotat ion directions in them being opposite (see Fig. 3a). In the course of subsequent evolution of the process, 

i.e., of complex wave and vortex interactions inside of the objects and on boundaries,  secondary vortex s t ructures  

originate a nd  gradually the velocity field in the striker and in the part of the plate located directly under  the s t r iker  

rearranges vertically and di rected upward (see Fig. 3b). By the time instant t ~ 1 3 b~sec the flow parameters  take 

the values tha t  satisfy criterion (9), and a recoil occurs. 

Complet ing the first section it should be noted that ,  on the one hand, vortex motions of solid media (as 

our computat ional  experiments showed [3 ]) generate unde r  similar actions not only in elastic objects but also in 

elasticoplastic and viscoelastic ones; on the other hand,  the vortex motions take place also in numerous o the r  

dynamic processes  in the mechanics  of deformable solids, and (as the authors informed us kindly) they were 

observed at  collision of different  cylindrical objects [5, 6 ], on breaking through barriers [7 ], under  the action of 

a die on a l a ye r  [8 ], etc. 

2. P rob lem of Motion of a Wedge in an Elastic Plane. As an example of the problem in which it is possible 

in a natural  m a n n e r  to uniquely divide a motion into vortex and potential ones, we consider the deformation of an  

elastic plane at the prescribed initial velocity in the wedge-shaped region. At the initial time instant t - 0, in the 

infinite wedge-shaped region with an arbi t rary aperture  angle (a 2 - a  1) between faces-sides (a I is the angle 

between the  first_~ide and the abscissa axis x, while a2, between the second side a._n,d the abscissa axis x) the 

constant velocity V' o = (V' x, V'y) is prescribed. Assuming a smallness of the velocity V 0 , the equations of motion 

in a polar coordinate  system (r, ~o) have the form 

2 
OrtYrr + cg~oOr~o/r + (Crrr -- %~o)/r  = POttu r , 

Or  + OrCrr~ o + 2ar~/r  2 = POttu ~ , 

where connect ions  between the  stresses and motions are  de termined by the relations 

Crrr = ;t div ~ +  2H0rUr, tT~o ~ = 2 div ~ +  2Hut~r,  

Crr~ o = It (O~our/r + OrU~o -- Ur/r ) , div ~ =  Oru r + O~ou~o/r + Ur/r .  

Initial condi t ions (at t = 0) are  as follows 

u r = u~o = O, Otu r = Otu~o = 0 when ~o E ]0, a 1 [O]r 2, 27r[ ; 

OtUr = V'xCOS ~, + V'ysin~o, Otu~= V'ycos~p-  V'xsin~o when ~o E ]al,  a 2 [ .  

(11) 

(12) 

(13) 

Since the dimensional scale of length is absent,  from problem statement (1 1)-(13) we can seek a solution 

in the form of 

u r = t f ( z ,  ~o), u~ = tg(z ,  ~o), (14) 

where z -- r / c l t ;  c 1 = [(2 + 21~)/p ]1/2 is the propagation velocity of volumetric compression. 

Initial equations (11)-(12) and initial conditions (13) af ter  nondimensionalization contain the following 

determining parameters  of the problem: 

Co= [~/ (2  + 2H) ] 1 /2 ,  V x =  V'x/c 1, V y =  V'y/C 1, a 1, a 2 (15) 

and after  substi 'tution of Eq. (14) into (1 1)-(12) and (13), they take the form 
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(1 - z 2) 02~r + Off /z  - f / z  2 + (Co/Z) 2 0299f + 

2 + [(1 - Co)2/z] Oz~ o g -  [(1 + Co)2/z 2 ] O~p g = O, 

[(1 Co)2/z] 2 - Oz, p f +  [(1 +Co)2/z 2]O~.f+ (c 2 - z  2) O~zg+ 
(16) 

2 + (c2/z )  0 z g - c~ g / z  2 + (0~o~o g ) / z  2 = 0 

and 

lim f ( z ,  50) = lim g(z ,  50) = 0  when 50~ ]0, a 1[ t3 ] a2 ,2 : r [ ,  
Z---~ OO g--.} O0 

lim f (z ,  50)= V x c o s 5 0 +  Vys in50 ,  lim g(z, 50) = VyCOS~O- V xs in~o  
Z--~ O0 g---> QO 

(17) 

when 50 E ] a l , a 2 [ .  

Solution of formula ted  self-similar problem (16)-(17) is sought in the form: 

f ( z ,  50) = U 0(z )  + 
n=l 

g(z,  50)= v O(z) + 
n=l 

(Un, 1 (z) COS an5 0 + Un, 2 (g) sin an50 ) , 

(VnA (z) sin an5  0 + Vn, 2 (z)  cos ang' ) . 

(18) 

Using the propert ies  of continuity,  boundedness ,  and periodicity of solution (1 8), af ter  tedious calculations 
(for this reason they are not presented here) we obtain its finite form, consisting of the potential (p) and  solenoidal 

(s) parts: 

f ( z , ~ o )  = f p ( Z ,  50) + f s ( Z , ~ p ) ,  g ( z ,  50) = gp (z,~o) + gs(Z'50)"  (19) 

The potential components  of the solution look like: 

2 
fp (Z, ~O) = E dPp (i, ai) G (75, fli) , 

i=1 

2 
gp (z, ~o) = (Vy cos 50 - V x sin 50) 1-I (50, a l ,  502) - ~ ,  Op (i, ai) F (z, fli) , 

i=1 

(20) 

while the solenoidal (vortex) components, like: 

2 
I (z, = 

i=1 
(I) s (i, ai) F (z-, fli) + (Vx cos ~o + Vy sin T) H (T, a l ,  a 2 ) ,  

2 
gs (a, 50) = E r (i, ai) G ('E, t~i) . 

i=1 

(20') 

Here  

fli = 50 - ai , ~ s  (i, ai)  = ( -  1 ) ' (V  x cos a i +  Vy sin a i ) / 2 ~  , 
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@p (i, ai)  = ( -  1) i (V x sin a i + Vy cos ai ) /2ar  , 

11(~O, a l , a 2 ) =  1 when ~ o - J r ~  ] a l , a 2 ,  l ,  

H(~o, a l , a 2 ) = 0  when  ~ o - n E  ]0, a l [ t 0  ]a2, ZTrl, 

F (T,/3i) = A (z) s i n  fli + B (r,/3i) COS fli -- C ('t, fli) sin 2 f l i / 2 ,  

G (r, fli) = a 0:) cos fli - B (T,/3i) sin fli  + C (z, fli) sin2 f l i ,  

where  z, A (T ) ,  B ( r ,  fli),  and  C(r , /3 i  ) are  d i f fe ren t  with respect  to z fo r  the  two regions:  

when  z ~  ]0, c0[ 

z = In {[c  O + (c 2 -  z 2 ) l / 2 , / z } ,  C ( r , / 3 i ) =  [3r/2 + a r c t a n  ( c o s f l i / s i n h  O ] / c o s h r ,  

B (z, fli) = arc tan  [sin 2 f l i / ( e x  p 2z + cos 2fli ) ] - -  f l i '  A (Q = z -- t anh  z ; 

when  z E  ]c o , oo[ 

= arccos (Co/Z) , 

A (~) = 0 ,  B ('G fli) = re, C (~,/3i) = 0 when  

A (r) = O,  B (r, fli) = O , C (z, fli) = n / c o s r  w h e n  

fli E ]-- 7g, T -- n / 2 [ ,  

/3 i E  ] r - - n / 2 ,  n / 2 - - r [ ,  

A (z) = O,  B (r, fli) = - n ,  C (r, fli) = 0 w h e n  fli E ].7r/2 - r,  :r [ . 

T h e  c o r r e s p o n d i n g  values for  the  solenoidal  velocity c o m p o n e n t s  (Vr) s and  (v,)  s t ake  the  form: 

2 

= IF( ,fl ) + P ( O  OzF( ,fli)] + 
i=l  

+ ( V  x cos ~o + Vy sin ~o) FI (~p, a l ,  a2)  , 

2 

(V#s = % (i, ai) [G fli) + 2' (r) O, G (z, fli) l . 
i = 1  

Here  ~s( i ,  a i ) ,  F ( z , / 3 / ) ,  and  G(z, fli ) are  d e t e r m i n e d  by relat ions (21) - (23)  and  by 

0 r F (T, fli) = D ( 0  sin fli + E (T, fli) cos fli - Q (z, fli) sin 2 f l i / 2 ,  

0 r G (r, fli) = D (r)  cos fli - E (r, fli) sin fli  + Q (r, fli) sin 2 f l i ,  

where  ~, P ( O ,  D ( z ) ,  E(z ,  fli ), and Q(z,  fli ) are  d i f fe ren t  with respec t  to z for  the  two regions:  

w h e n  z E  ]0, col 

T = l n { [ c  0 + ( c  2 - z 2 ) l / x / z } ,  P ( r )  = c t a n h r ,  

D (z) = 1 - cosh - 2  z ,  Q (r,/3i) = - t a n h  TC (z , /3 / ) ,  

E (z,  fli) = sin 2fli {(sinh2 z + c o s 2 / ~ i )  - 1  - 

(21) 

(22) 

(23) 

(24) 

(2s) 

781 



- 4 exp 27 [(exp 27 + cos 2fli) 2 + sin 2 2 f l i ] -1} /2  ; 

when z E  ]c0,~ 

z = a r c c o s ( c 0 / z  ) ,  P (7) = - c tanr  , D(7) = E (r, fli) = 0 ,  

Q (7, fli) = 0 when fli ~ ] - -  g ,  7 - -  g / 2  [ U k-r/2 - 7, Jr [ ,  

- 1  
Q(7,  f l i )= g t a n T c ~  7 when f l iE  ] 7 - g / 2 ,  g / 2 - r [ .  

The  functions of vortices for the motion u and  velocity v have the form 

2 
rot g '=  ~ <D s (i, cti) U (Z-, f l i ) '  

i=1 

where U(7, fli) take different  values with respect to z for  the two regions: 

when z ~  ]0, co[ 

when 

U (7, f l i)  = c o s h  "r C (7, f l i ) /Co  ; 

z ~ ]co, oo [ 

U (7, fli) = 0 when 

U (7, fli) = g / C o  

fli ~ ] - J r ,  7 - z z / 2 l  tO ] z / 2  - 7, g [ ;  

when f l i E  ] 7 - g / 2 ,  g / 2 - 7 [ ;  

(26) 

(27) 

(28) 

(29) 

(30) 

2 

rot -~= ~ ~s (i, ai) V (z, fli), (31) 
i=1 

where V(7, fl/) take different  values with respect to z for the two regions: 

when z E  ]O, co[ 

r = In {[c o + (C2o - z 2 ) l / 2 / z } ,  (32) 

V ( g , / ~ i )  = - ctanh 7 cos fli [Co sinh 7 (sinh 2 7 + cos 2 fli) ]- 1 ; 

when z E  ]co,~ 

7 = arccos (Co/Z) , 

V (7,  f l i )  = g [r (fli - -  7 + g / 2 )  + ~J (fli + 7 - g / 2 )  ] / C o ,  i = 1, 2 .  (33) 

We note that potential  and  vortex solutions have a specific feature at the wedge vertex, which is annihi la ted 

on their summation. 

Before proceeding to graphical interpretat ion and  subsequent analysis of analytical  solution (20)-(32) for  

different values of initial condi t ions (13), we note that  in section 1 the vortex motions of the medium are i l lustrated 

by the velocity fields (see Figs. 1 and 3); therefore,  first, calculations in [1, 2 ] were carried out not directly f rom 

Eqs. (1)-(2) for motions but  by their analogs in velocity variables and, second, for possible comparison of the 

resulting vor tex- type flows with similar flows in hydrodynamics  that can be natural ly  visualized using computer  

graphing by the velocity fields. Further,  in direct s tudy  of vortex motions in solid media,  for illustrations use is 
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Fig. 4. Patterns of vector fields of total (a), vortex (b), and rot u-" (c) motions 
wi th the direction of the init ial velocity ~ over the f irst quadrant bisectrix 
(variant 1) and over the normal to the first quadrant bisectrix (variant 2). 

made  of fields of mot ions ,  since the s t r e s sed-de fo rmable  state of solid subs tances  is determined ei ther  by a current  

type of this field or  b y  the entire h is tory  of its variation. 

We consider  solut ions of p rob lem (11)-(13) for two sets of de te rmin ing  parameters  (2.5): c o --- 0.55; a I -- 

0; a 2 = ~ / 2 ;  Vy-- - 1 0 - 3 ;  Vx = - 1 0  - 3  (variant  1) and Vx = 10 -3  (var iant  2). 

Var iant  1 co r r e sponds  to the a s s ignmen t  inside of the first  quadran t  of the velocity, equal to I VI = 

v ~ .  10 -3  and directed a long a proper  bisectrix;  variant  2, to the a s s ignment  of the same velocity in the modulus  

directed to the bisectr ix  over the normal .  

Figure 4 p resen t s  the vector fields of motions ff (a) and  of thei r  solenoidal components  u s (b), as well as 

the isolines of the vor tex  functions rot  ~ (c) for variants 1 and  2, respect ively,  in a square  with a center  at the 

coordinate  origin (0, 0) and  a side equal  to 2.9 in the variables z = r / c l t  (Fig. 4 illustrates the axes of coordinates  

x and  y and the circles of radii z -- c o and  1; arrows indicate the direct ions of initial motion). From the fields of 

motions ff (see Fig. 4a, var iants  1 and  2) it is difficult to say anyth ing  abou t  the nature  of the medium motion apar t  

f rom its obvious s y m m e t r y  with respect  to the bisectrix (a 2 - a l ) / 2  for var iant  1. From the distr ibutions of the 

vortex functions rot  ~" (see Fig. 4c, var ian ts  1 and  2) it is possible only to establ ish that the medium motion in both 

cases is vortical, s ince there  are regions where  rot f f ~  0. Pat terns  of the  fields of solenoidal motions a re  consider-  

ably more  informative,  since with these  it is evident that for the first var iant  the vortex motion is separa ted  into 

two vortex flows tha t  a re  symmetr ic  abou t  the  bisectrix (see Fig. 4b, var ian t  1), while for the second var iant ,  the 

vortex motion has a unique twisted closed structure,  which rotates  in a clockwise direction with a center  nea r  the 

angula r  point of the  wedge  (see Fig. 4b, var iant  2). 

In conclusion we note that pure ly  f rom theoretical and  methodical  viewpoints the problem invest igated is 

a new section in the  dynamics  of solid media ,  since the theory crea ted  for vortex flows of solid media  is new by 

itself as are the invest igat ion methods  developed on the basis of analyt ical  and  numerical approaches.  

The  present  work  was carr ied out with financial support  of the Russ ian  Fund for Basic Research  (grant 

No. 98-01-00019).  

N O T A T I O N  

x, y, Ca r t e s i an  coordinates;  r, z, ~ ,  radial,  axial, and az imuth  coordinates;  t, time; -~(u r, Uz, u~), motion; 

~(v r, v z, u ) ,  velocity; arr, ~zz' arz' ar~' components  of the stress tensor;  Pi, material  'density;  V(Vx, Vy) and  V' O, 
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VO, initial velocity (with a prime, dimensional; without a prime, dimensionless); 2i and/~i, Lame parameters; c i, 

plug velocity; c O = ~ / ( 2  + 2/Q ]t/2; r0' R0 and h 0, H 0, radii and heights of the objects; V m, vertical velocity 

component of the cylinder mass center; F(t), force on the contact surface of the objects; a l ,  a2, angles between the 

wedge sides and abscissa axis; ~i  -- ~ -- Cti' f ( z ,  ~o), g(z, ~ ) ,  self-similar solution; fp, gp, and fs, gs, potential and 
vortex components of the solution, respectively; t~p(i, cti), (I~s(i , ai), I-I(~o, ctl, a2) , F(z, fli), G(7:, fli ), A(aT), B(-t:,fli) , 

C(T, fli ) , E(z ,  fli ) , Q(z, fli), P(r) ,  D(z), U(z, fli ) , V(r, fli ), auxiliary functions; 6, delta-function. Subscripts: m, mass 
center; p, potential components; s, vortex components; i = 1, 2. 
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